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Semiclassical dynamics of a bound system in a 
high-frequency field 

Naama Brenner and Shmuel Fishmant 
Department of Physics, Technion, Haifa 32000, Israel 

Received 5 May 1995 

Abstract. The quantal behaviour of a particle in a onPdimensional triangular potential well, 
driven by a monochromatic electric field, is studied. A classical high-frequency expansion 
together with semiclassical uniform methods are used to obtain an explicit form of the Flcquet 
evolution operator in the unperturbed basis. A local exact solution is found for the eigenvalue 
equation of this operator under certain conditions. The local solution provides a tool for the 
quantitative investigation of the eigenstates. It predicts the appearance of quasi-resonances, or 
photonic states, and gives their Location, shape and width as a function of parameters. It also 
predicts a local crossover from a decaying region to a more extended region as a function of 
n. with a point of crossover n, between them. The results concerning the local structures are 
used to justify and extend a previously suggested method for the investigation of the asymptotic 
properties of the eigenstates. These r d  found to decay with a power depending on the field 
parameters (first proposed by Benvenuto eta[). The specific system studied here is suggested as a 
prototype model for a class of driven one-dimensional bound systems. whose main characteristic 
is an increasing density of states as a function of energy. 

1. Introduction 

The quantum mechanical behaviour of  oned dimensional systems that are chaotic in the 
classical limit has been studied extensively [1-6]. These systems are of conceptual interest 
in the field of ‘quantum chaos’ [1,2,7,8], and are of experimental relevance as models of 
realistic systems [3,9-111. Having only one degree of freedom, these systems are easy 
to understand theoretically and to simulate numerically. Yet, in general, their classical 
dynamics is chaotic, showing complex behaviour and diffusive motion in phase space. The 
physical relevance of these model systems results from the fact that in many cases the 
motion of small driven three-dimensional objects can be described approximately by one 
effective degree of freedom. Such is the case, for example, for the linear molecule [9] and 
for the highly excited hydrogen atom in a microwave field [3]. Of particular importance in 
this respect is the family of models describing periodically driven one-dimensional systems, 
which are related to small quantum systems in periodic driving fields. For these, quantum 
mechanics is described in terms of the Floquet operator, which is the unitary operator of 
time evolution for one period [2, 12, 131. 

The most well understood model system is the kicked rotor, described the Hamiltonian 
[4,14,151 
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where 8 is an angle and p is the conjugate angular momentum. It describes the motion 
of a rigid planar rotator with a moment of inertia equal to unity and an electric dipole, in 
the presence of a periodic electric field with a time dependence of a train of &functions. 
The effective strength of the driving is K, and time is measured in units so that the period 
is unity. A possible different interpretation of this Hamiltonian (with different boundary 
conditions) is that of a particle in an infinite square well potential in one dimension [16]. 
Classically, the kicked rotor reduces to the standard map 1151, being a stroboscopic map 
relating the variables (8, p )  at successive time periods of the external field. For large 
enough values of K ,  the trajectories in phase space of this map are diffusive, i.e. the 
average momentum squared satisfies ( p 2 )  - t [14,1S]. Quantum mechanics introduces an 
additional parameter, namely the effective Planck constant A. The simple &function time 
dependence in this model enables the exact calculation of the Floquet operator in the basis of 
the unperturbed angular momentum eigenstates In). One finds that it has the form of a band 
matrix, with the bandwidth depending on ( K p ) ,  and that generically the diagonal elements 
are pseudorandom [6]. This is the basis for a formal mapping between this problem and 
that of a particle in a one-dimensional lattice with random on-site potential and a finite 
range of hopping interaction [6]. This is a well studied problem in solid state physics 
[17,18], and it is known that Anderson localization is found in this case: all eigenstates are 
exponentially localized on the lattice, with a typical localization length 6. Conespondingly, 
the eigenstates of the Floquet operator are exponentially localized in the In) basis. This 
implies that the classical growth in energy of the system, related to the diffusion in phase 
space, is suppressed in quantum mechanics by a mechanism similar to Anderson localization 
IS, 6, 181. Many results from localization theory were successfully carried over to explain 
the dynamics of the kicked rotor [ 19-23] 

Inspired by these ideas, much research has been performed along similar lines for other 
systems. Many classical systems c a r  be approximated locally by the standard map, and 
therefore localization was expected to play an important role in their quantum dynamics. In 
particular, Casati er al [3 ]  described classically the driven one-dimensional hydrogen atom 
(which is a good approximation to the three-dimensional highly excited hydrogen atom), 
by a map on a Poincari surface of section, called the Kepler map [24]. Rather than being 
stroboscopic in time, this map relates the values of the external field phase and the energy of 
the electron at successive passes near the nucleus. This nonlinear map is locally similar to 
the standard map, therefore it was argued that locally its quantum dynamics should be like 
that of an Anderson model, with a localization length 5 related to the parameters of the local 
classical map [24]. Jensen et al [U] used an effective local quantization of the standard 
map on a partial set of the unperturbed basis, consisting of quasi-resonant states which 
dominate the dynamics. Other approaches, not related to Anderson localization, were also 
suggested for the theoretical treatment of the driven hydrogen atom. In particular, Bliimel et 
a1 [26] proposed an approximation based on the fact that in different regions of unperturbed 
quantum number n one part of the Hamiltonian is much larger than the other. Power-law 
localization of the Floquet eigenstates was found numerically, and explained semiclassically 
to result from the structure of the position operator 2 in the unperturbed basis. 

Some important differences between the kicked rotor and other driven systems, in 
particular the hydrogen atom, should be kept in mind when making use of analogies to solid 
state models. First of all, there is no pseudorandom element in the unperturbed spectrum 
of the hydrogen atom. whereas for the kicked rotor the structure of the unperturbed 
energy levels En - n2 results in the diagonal elements of the Floquet operator having 
pseudorandom phases, for the hydrogen atom E, - -1 In2, for which the phases are far 
from being pseudorandom. In contrast, for large n the sequence of phases En(m0d2n) 
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becomes a slowly varying function of n, that is almost constant. This property is shared 
by other confining potentials with a discrete spectrum.  consider^ a potential well in one 
dimension which has the form of a power law, V ( x )  - xu .  For U c 2, the energy levels 
become dense at high energies, i.e. the level spacing tends to zero. This means that the 
phases E,(mod%) are not pseudorandom [27,28], but are a slowly varying function of n 
for large n. For larger powers satisfying U 2, the unperturbed spectrum is not slowly 
varying, but it is not pseudorandom either, and other kinds of behaviour can be expected 
128-301. Only in the limit of the power going to infinity, corresponding to the infinite 
square well, is the spectrum pseudorandom as in the case of the rotor. 

Another difference, related to the first one, is the spectrum of unperturbed frequencies 
corresponding to transitions between unperturbed states. The kicked rotor has one basic such 
frequency, and all transitions are multiples of this basic frequency. The scenario of Anderson 
localization described above holds for the non-resonant case, where the frequency of the 
driving field is not rationally related to this basic frequency of the rotor. For the resonant 
case, the dynamics is very different: rather than suppression of energy diffusion, resonant 
excitation takes place [31]. On the other hand, for systems where the unperturbed spectrum 
E, is a slowly varying function of n,  there are many transition frequencies, and there can 
be many near-resonances with the external field. This is the reason for the occurrence of 
‘quasi-resonances’ [33] or ‘photon states’ [24] both in the transition amplitudes and in the 
eigenstates of the Floquet operator. 

In order to shed some ,light on the quantal behaviour of periodically driven systems with 
an asymptotically slowly varying unperturbed spec”, a specific system of this type will 
be studied in the present work. It is defined by the Hamiltonian 

where m and q are, respectively, the mass and electric charge of the particle, and EO is the 
strength of the constant electric field which constitutes the confining well. The condition 
2 > 0 means that there is a perfectly reflecting wall at 2 = 0. The strength of the 
time-dependent electric field is E, and it drives the system with an angular frequency fi. 
We suggest this system as a prototype for the family. of one-dimensional models where 
the unperturbed spectrum E, is a slowly varying function of R. As explained above, the 
hydrogen atom, as well as power-law potential wells with a power smaller than 2, fall into 
this category. For these systems, since the classical frequency of the unpemrbed motion 
tends to zero at high energy, an external periodic perturbation becomes of high frequency 
compared to the classical frequencies in this region. If one external frequency is involved, 
this allows the effective separation of time scales and a formal perturbative expansion around 
the high-frequency limit. A small parameter can be defined, which is the ratio between the 
unperturbed classical frequency and the driving frequency, and its dynamics can be studied 
classically for short times. Since the field period is a very short time scale in the problem, 
a semiclassical calculation of the Floquet operator using the short-time classical solutions 
is expected to he very accurate. Under certain conditions, it.will be shown that the slowly 
varying nature of the unperturbed energies can be exploited to construct a local exact solution 
to the semiclassical eigenvalue equation. This results from the fact that locally this equation 
is related to that of the kicked linear rotor, which is an exactly solvable problem [34]. The 
local solution can be used to investigate the properties of the quasi-energy eigenstates, 
including a quantitative description of the quasi-resonances, their location, shape and width, 
and a characterization of the typical width of the eigenstate. The results concerning the 
local structures can, in this case, be used to justify a previously suggested method for the 
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study of the asymptotics of the eigenstates [321. This method consists of a projection of an 
eigenvalue equation from the n-space to the partial set of quasi-resonances; therefore, the 
information concerning the structure of these quasi-resonances is of importance in applying 
it. 

It should be mentioned that a model similar to (1.2) has been studied by Shimshoni and 
Smilansky 1351, but with a driving field in the form of &kicks. It turns out that the results 
in that case are quite different &om those found for the model (1.2). The reason for this 
difference will become clear at a later stage. 

The Hamiltonian (1.2) appears in several areas of physics. It is a model for trapped 
charge carriers under the surface of helium IV [36]. The charge carriers are repelled from 
the surface into the liquid, where the dielectric constant is larger, by their image charge. 
If, in addition, a constant electric field EO is applied perpendicular to the surface, the total 
potential acting on the particle is 
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where Z is a constant depending on the dielectric constant of the liquid, q is the particle 
charge and .? measures its distance from the surface. The basic features of this potential 
are strong repulsion near the surface, and a linear dependence on the coordinate far from 
the surface. Therefore, the Hamiltonian (1.2) was suggested as a simplified model for this 
system [35]. 

It is also related to the motion of electrons in a very weak magnetic field, near a 
surface 1371. Such electrons move along ‘skipping orbits’, performing only small portions of 
the cyclotron motion and colliding with the surface at a small angle of incidence. The degree 
of freedom corresponding to the motion perpendicular to the wall, can be approximately 
described by the binding potential in (1.2). Transitions between the unperturbed Levels 
E, - n*/3 explain accurately the peaks in the surface impedance of materials in a weak 
magnetic field 1381. 

A simple classical interpretation of (1.2), is a massive ball bouncing on a periodically 
vibrating platform, under the influence of gravity. This classical model has been studied 
by Pustylnikov [39], who proved that there are sets of initial conditions for which diffusive 
trajectories in phase space are found. A classical Kepler-cype map was constructed by 
Benvenuto et at [40], which accounts accurately for the classical motion. For the quantum 
problem, numerical simulations indicate a transition from localized to extended states as a 
function of the driving strength 1401. An analogy was proposed to an Anderson-type model 
with a variance of the random potential which varies along the lattice [32]. For this solid 
state model, it is known that a transition takes place between power localized (normalizable) 
and extended (non-normalizable) states [41]. It was argued that a similar mechanism causes 
the delocalization of the Floquet eigenstates in the dynamical problem. 

In the present work, the method outlined earlier for systems with a slowly varying 
spectrum will be applied to the model system (1.2). In section 2 the classical equations of 
motion will be solved approximately in the high-frequency field regime, and an approximate 
stroboscopic mapping will be constructed. In section 3, the approximate classical trajectories 
will be used to calculate a semiclassical approximation for the Floquet operator in the 
unperturbed basis. In section 4, the local solution will be presented, and properties of the 
eigenstates will be deduced from it. The predictions will he tested numerically wherever 
possible. The conclusions will be summarized and discussed in section 5. 
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2. Classical dynamics 

In this section the classical dynamics of the model system defined by the Hamiltonian (1.2) 
will be investigated. For this purpose, a perturbative approach will be employed, which is 
appropriate for the high-frequency field regime. A small parameter will be defined, which 
effectively separates two time scales in the system: one (fast) related to the external field, 
and the other (slow) related to the unperturbed motion. The Hamiltonian (1.2) can be scaled 
to convenient units, so that classically it depends on two parameters: the external driving 
frequency and the external driving strength. A convenient transformation that is used in the 
present paper is~x = c,f and p = cpa,  with c, =LJ& and cp = 3 n / f i .  The time and 
the frequency in these units are t = cxcp? and_ Q = Q/c,c,; The value of the energy is not 
altered by this msformation, namely H = 31, and it-has the form 

x=- p 2  + x + k x c o s Q t  (2.1) 2 ( 3 ~ ) ~  
where k = &/EO. Note that this transformation leads to the transformation of the value of 
Planck's constant, R = c,cpf;, where f ;  is Planck's constant in the units of (1.2). while fi is 
its value in the units of (2.1). 

The unperturbed system, described by the Hamiltonian 

x 0 = & + x  (2.2) 

is an integrable one, with action-angle variables defined by the following energy-dependent 
canonical transformation: 

where the (-) sign corresponds to positive momentum and (+) to negative momentum. 
Here the angle is defined such that it is zero when x = 0, at the beginning of the classical 
orbit, and is 2n when x = 0-again at the end of the orbit; 

In what follows, the dynamics of the driven system will be described in terms of these 
variables. The full time-dependent Hamiltonian in these action-angle variables is 

where a(@) = 2n8 - 8', and 8 = B mod2n. Hamilton's equations of motion are then 
. k  

IF2 
I = -Pl3(8 - n) cos Qt 

These equations, of course, cannot be solved exactly for long times, since the system is 
chaotic. For short times, a perturbative method can ,be used. Rather than treating k as the 
small parameter.and the driving field as a perturbation to the particle in the well, we take 
a somewhat different approach. Since the system is also intepble  in the absence of the 
reflecting wall, we effectively take as our 'unperturbed' situation the one where the particle 
does not interact with the wall during most periods of the driving field. This condition is 
approached as the energy of the system 7-10 becomes~higher, since the time of return to the 
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wall grows with the energy. The dimensionless parameter which controls this approximation 
is the ratio between the classical frequency and the field frequency, 
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where E ,= 0 corresponds to the ‘far-wall l i t ’  1351, and our aim is to expand the solution 
for small but finite E .  To do this, it is convenient to define a dimensionless time variable 

t = at (2.9) 

so that the driving field has a cycle of length 2n, namely an angular frequency of unity. 
To make this a canonical transformation, we accompany it by a change of the energy scale, 
‘li + X/Q. We note that E ,  being a function of the action I ,  varies with time. We therefore 
ulite the equations of motion for the two variables E and 8 as 

- = _  E2(rr -6)cosr  
d r  n2 
d8 k - = E + --Ea(@) cos r . 
d r  nz 

(2.10) 

(2.11) 

It is seen that under the  assumption^ that E << 1, the time variation of E is slower than that 
of 8. Therefore, it is possible to solve the equation via an iterative process of a Born- 
Oppenheimer type. In what follows, we will always measure the time from the beginning 
of a cycle of the electric field. Similar formulae, but more complicated, can be derived for 
the more general case where the initial time is t o  # 0. 

The first step is to assume that is constant, and to solve the equation for B .  This is 
the first order in E ,  and one obtains 

(2.12) 

where Bo = e(? =O) and c0 = G(T =O). To lowest order the motion in 8 is linear in time 
(with the coefficient CO), with oscillations of unit frequency on top of the smooth motion. 
The magnitude of the oscillations depends on 80 as well as on EO,  being maximal at 00 = rr 
and approaching zero as Bo approaches the ends of the interval [0, 2x1. 

The next step is to insert the solution for S(s) into the equation for E and solve it to 
second order in EO. It should be noted that the equation of motion for E ,  equation (2.10). 
includes a mod operation. In general this introduces great complexity into the solutions, but 
since we are interested in solutions only for short times, there will be at most one ‘jump’ 
mod2a of 8(r)  within a period of the external field. This is because of our assumption that 
E << 1, which implies that during the field cycle the particle completes only a small fraction 
of the unperturbed period, corresponding to the angle B completing only a small fraction 
of a cycle of 2n. According to the definition of 8, it equals an integer multiple of 2n 
whenever the coordinate x is zero, i.e. when the particle collides with the wall. Therefore 
the ‘jump’ mod 2rr is exactly the collision with the wall, and under our assumptions it can 
occur at most once during the external field period. The two cases of a cycle with and 
without a collision will yield two different solutions for E ( ? ) .  It is helpful to define the 
‘collision time’ 5’ by the equation e(?*) = 27r. A collision will occur in a cycle, only 
if the angle Bo at the beginning of he cycle is close enough to 2z, so that t* -= 2n. In 
this region of initial conditions, the function a(&) is small, so that r* is determined to first 
order by the equation 

80 +ET* = 2n.  (2.13) 
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This may be formulated as a condition on 9 for the occurrence of a collision in the cycle, 
namely for r* < 211: 

(2.14) 

It can now be checked that indeed U(&) is U(€) in this region, so that it is consistent to 
neglect ir in the first-order approximation for r*. The solution for E(r) can now be written, 
with the two cases--collision or no collisiondetermined by the initial angle. If 6'0 < e*, 
i.e. the initial condition at the beginning of the cycle is such that no collision will occur, 
one obtains 

e, > e* = 2x(l - E ) .  

where g(r)  = (rsinr+cosr-1). In this case ~ ( r )  changes periodically within the cycle, 
leaving no net change at the end 

E ( k )  = E , .  . (2.16) 

If, on the other hand, 90 > e", i.e. the initial angle is sufficiently close to 211 for a collision 
to occur, one finds 

(2.17) 

where 

In this case there is a net change in e(r)' over one field period. With the help of (2.8), 
the solution can now be written to the order of €03 in terms of the canonical variable I: for 
a cycle with no collision, one finds 

(2.19) 

while for a cycle with a collision, 

In figure 1, the solution for I(s) to second order in E is shown, within a cycle that contains 
a collision. The function I ( r )  has a cusp at r = r*, the collision time. The perturbative 
solution (squares) is compared to the exact numerical integration of (2.6) and (2.7). 

The relation between the values of 9 and I at a fixed time in successive cycles of the 
electric field, defines a classical mapping. This may be written, to first order in EO,  as 

e, <e* 

where I,, and 9, are the values of the dynamical variables at the beginning of the nth field 
cycle. The two branches of I;,, correspond to 0, being less than or greater than e*, i.e. to 
the occurrence or absence of a collision. 
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310 - h0.45 
+ 

- 
7' % 2% 

7 

Figure 1. The permrbative solution (squares) for the action variable I (T) within one field cycle 
containing a collision. COmDared to the exact numerical solution (full cnrve). The collision time 
is 7". 

In principle, the method described above allows one to proceed to higher orders in 60. 
The solution for e(t) to second order in 60 is presented in appendix A as an example, 
where the time variation €(r) is taken into account. This is the next step in the iterative 
Born-Oppenheimer procedure. It should be noted that t* and 8*, being dependent on 
both dynamical variables, must also be expanded in powers of €0 to the correct order. The, 
calculation of the Jacobian of the map (2.21) to first order, given in appendixB, demonstrates 
this expansion. It is seen that in order to include all first-order terms in the Jacobian, the 
map should be calculated to a higher order. 

A qualitative picture of the dynamics may be described from the lowest order in (2.21). 
In this approximation, for some initid conditions there is free dynamics, whereas for the 
others, the particle undergoes a collision with the wall, which, similar to a 'kick', may 
change its action. Therefore the field effectively transfers energy to the particle only near 
the wall, whereas far away from the wall its effect reduces to local oscillations of the action 
with no net change. Previous works I401 have exploited this fact to construct an 'impact 
mapping' relating the action before and after a collision. As I becomes larger, the time 
between collisions becomes longer, and the motion is regular for longer periods of time. 
The effectiveness of the 'kick', however, also grows with I, so that looking at long times 
compared to the classical period the motion is never really regular. This qualitative picture 
allows one to calculate the average rate of diffusion in 1. Each time the particle collides 
with the wall, it acquires an additional action 

(2.22) 

Assuming t* to be uncorrelated at different collisions, this averages over many collisions 
to 

(2.23) 
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The time between collisions is approximately equal to the unpeaurbed cycle time, T = 
63~1"~.  so that as a function of the time t 

(2.24) 

This is the same result as obtained by the impact mapping [40]. but in different variables. 
In order to describe a global picture of the phase space under the action of the map (2.21), 

it is helpful to find some of the periodic orbits, or fixed points of order r ,  of the map. These 
are defined by the equations 

I,, = I, e,,, =e, f 2x1 (2.25) 
where 1 is the winding number, resulting from the periodicity of phase space in 8. The 
fixed points of lowest order r are easily found,assuming that the particle hits the wall at 
most once during the period of the fixed point. If this is the case, the action changes only 
at one field cycle of the period, whereas it stays constant in all other field cycles. Solving 
the equation for 0 in (2.25) and (2.21). it is seen that to the leading order the values of I 
at the fixed points satisfy 

(2.26) 

This is simply the resonance condition. Since wO(I) /n  = E ,  only orbits with l / r  << 1 
can be found in the framework of our approximation. Equation (2.26) can he written as a 
condition on I ,  

(2.27) 

It is seen that for a given r there is a maximal value of I (corresponding to 1 = I), where a 
period of length r occurs; at larger actions, only fixed points of higher order are found. From 
the equations for I in (2.25) and in (2.21). one finds that the fixed points must also satisfy 
sin t* = 0. For each given I ,  this is a condition on the angle 0. There are two types of fixed 
points, determined by the value of cos t*. For the first kind, where cos r* = 1, one finds 
that 0, = ~ 2 z l j / r ,  where 1 < j <K. This means that 0 passes through the two endpoints of 
the segment [e*, k], which is the segment of initial conditions for which collisions occur. 
At these endpoints, r' = 0 or 21r and the action remains unchanged, therefore these are 
fixed points. The stability of the periodic orbit is found by diagonalization of the local 
monodromy matrix to leading order. For the case cos? = 1, it is found that the fixed 
points are unstable, and denoting the eigenvalues by e*5, one finds 

(2.28) 

Thus the mapping becomes less unstable for large values of I .  The second kind of periodic 
orbit is found for cosr' = -1. These also occur at actions I satisfying (2.27), and are 
composed of the points 8j = n Z ( 2 j + l ) / r ,  where O <  j < ( r - I ) .  This,orbit passes through 
the middle of the segment [e", 2x1, where t* = 3 ~ .  These fixed points are stable, and the 
eigenvalues of the monodromy matrix are e*iup. The two periodic orbits at the same value 
of I form a chain of alternating stable and unstable fixed points. 

A  typical set of phase-space trajectories of the approximate map (2.21) is shown in 
figure 2(a).  The trajectories are shown only in the vicinity of the unstable fixed points, 
since near the stable ones the violation of area preservation in the approximate map 
makes long trajectories meaningless. Figure 2(b )  shows a set of trajectories of the exact 
mapping, obtained ,by numerical integration of (2.6) and (2.7). For the sake of comparison, 
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~~ . .  . .  . .  . .  .. . .  . 

e e 
Figure 2. Phasespace mjenories in the vicinity of the unstable periodic orbits, fork = 0.5 
and D ̂ I 0.45. ( U )  The approximate map, (b) the exact map. 

only trajectories near the unstable fixed points are shown for the exact mapping as well. 
The general structure of the fixed points can still be seen clearly from this partial set of 
trajectories. 

It should be noted, in concluding this section, that the procedure presented above can 
be applied to other situations. Consider a Hamiltonian in action angle variables, 

w I . e ; r )  = ~ m  + k v ( i ) a ( e ) f ( t )  (2.29) 
where %,(I) = A l a  and V ( 1 )  = BIB, with positive a and 6, while a(6') is a 2n periodic 
function, and f ( f )  is periodic in time &ith a frequency a. If 0 < a < 1, the small parameter 
E = aAI"-'/S2 can be defined, and equations of motion for 6' and for E take the form 

de 
- = ~ ~ ( k , a , e ) ~ S f ( T )  dr  (2.30) 
d6' - = Q -l- Fz(k, S2) €5 f ( r )  d r  (2.31) 

where 

and 

(2.32) 

(2.33) 

If 6 < a, the time dependence of 6' is dominated, to lowest order. by the unperturbed motion, 
and is faster than the time variation of I .  Then, a Bom-Oppenheimer-type expansion similar 
to the one applied here, can be used to find the approximate classical solutions for one cycle 
of the external driving. 

3. Semiclassical dynamics 

In this section the quantum dynamics of the system will be analysed in the framework of 
the semiclassical approximation, taking as the classical input the approximate results of the 
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previous section. A form of the semiclassical approximation for Feynmah’s path integral 
will be used to calculate the evolution operator for one cycle of the electric field. The units 
used in this section are the same as in the previous one, namely those of the Hamiltonian 
(2.1) scaled by l/Q, with the dimensionless time r .  

The semiclassical propagator in the action representation is [42] 

where the sum is over classical trajectories connecting I at time t to I’ at time r’. The 
action Sj(l’, I)  is^ the generating function of the canonical transformation of time evolution 
along this classical trajectory: 

Z‘ 

Sj(I’, I) = du{-0(u)i(u) -‘HtI(u), 0(u)l) (3.2) 

where I ( u )  and @(U) are the dynamical variables along the j th  trajectory. The amplitudes 
Aj(I ’ ,  I) are related to this classical generating function via 

(3.3) 

One must therefore solve the classical ‘boundary-value problem’: given two endpoints 
I and 1‘, find the classical paths connecting them in a given time, and calculate the 
corresponding generating function S. In our case, we are interested in time evolution 
over one period of the external field, i.e. r‘-7 = 2x.  The time is measured, as usual, so 
that a cycle begins at r = 0 this restriction is only for convenience and is not an essential 
one. If the action is I at time r = 0, then to leading  order^ the action at time r = ZR is 

0 < 0* 
(3.4) 

where here 0 is the angle at the beginning of the cycle (which was denoted by 00 in the 
previous section), and t* is the time of collision with the wall. To the leading order, 
r* = ( Z X - ~ ) / E ,  where E = . w o ( l ) / e .  Consider first the case of the boundary value problem 
with I‘ # I, corresponding to the off-diagonal transition amplitudes. In this case, the 
classical path must be such that 

For a given pair ( I ,  l‘), the classical paths are determined by the initial value of 0. 
Expressing r* as an explicit function of I and 0, we find the equation for this initial 
coordinate 

0 = 2n - E arcsin (;; -- (I;;:)) . 

If the argument of the arcsin is of absolute value less than one, there are two distinct real 
values 0 satisfying (3.6). In this case,’ I and I’ satisfy the following condition: 

(3.7) 

These two values of 0 correspond to the two branches of the arcsin. They are the initial 
conditions of two distinct classical paths satisfying the boundary conditions. The two 
solutions coalesce when an equality holds in (3.7). This is the kni t  of the classically allowed 
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region, and beyond it only complex values of 8 satisfy (3.6). The regular semiclassical 
approximation breaks down in what is known as a catastrophe, when such a coalescence 
of classical paths occurs. Rather than treating each region separately, it is possible to use 
a uniform approximation to get an expression which is valid on both sides of the singular 
point, as well as near i t  This approximation consists of making a coordinate transformation 
which leaves unchanged the smcture of stationary points of the path integral, i.e. their 
number, position, and the second variation in their vicinity. Therefore, the semiclassical 
approximation remains unchanged. This method is applicable for ordinary integrals [43] 
as well as path integrals [MI. The situation where only two classical paths coalesce is 
the simplest case of a catastrophe. A cubic transformation gives the integral in terms of 
Airy functions and their derivatives; this is the well known Airy approximation [45]. An 
alternative transformation to a cosine function is more suitable for finite integrals with 
periodic boundary conditions. This gives the integral in terms of Bessel functions and their 
derivatives [46]. 

It is convenient to use the uniform approximation in the ‘initial-value representa- 
tion’ [44]. This method will be used in this section. The expression for the propagator 
(3.1) can be derived as a stationary phase approximation of a path integral, where the sum 
over classical paths is a sum over the stationary points. The initial-value representation 
expresses this path integral as a regular integral over the initial conditions 8, of a funo 
tion which has a similar stationary point structure, and in particular has the same type of 
catastrophe or coalescence of stationary points. Within the semiclassical (stationary phase) 
approximation, the initial-value representation of the propagator is equivalent to (3.1), and 
it is only in this sense that the corresponding integral should be understood. The initial 
variables of a classical trajectory at time r will be denoted by ( I ,  81, while the final values 
of the variables on the same trajectory at time 5’ will be denoted by (If, 8f). These values 
depend on the initial values (I, 8) through the equations of motion. In this notation, the 
transition amplitude takes the form [44] 
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where 
~ ( 8 )  = s(if(e), r )  + [ f f ( e )  - r’ief(0). 

This representation holds if the condition 

- # O  
aef (e) 

a0 

(3.9) 

(3.10) 

is satisfied for all values of 8 [44]. 
In what follows, we will use the approximate solutions of the classical equations of 

motion, obtained in the previous section, to calculate approximate expressions for the action 
S(I’ ,  I) and the transition amplitudes K(I’, 2z; I, 0). We would like to point out that this 
procedure is perturbative in the small parameter E defined in section 1, and not in the 
strength of the driving field. In particular, for every value of the external field, there exists 
a region where the quantum number n = I / E  is sufficiently large so that this approximation 
holds. 

We will use an approximation to S(I’, I) that contains the two terms leading in E ,  
which are of order E - ~  and E-’ .  To get all the terms of this order, one needs to take 
into account only the first-order solution for 8(s ) ,  and two orders in the solution for Z(r): 
those proportional to Z2I3 and to One should also take into account the fact that the 
propagator is large only in the region of allowed classical paths, and therefore ( I  - 1’1 is 
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effectively of order Z*/3, as is clear from (3.7). Note that to the off-diagonal eIements, only 
cycles which contain a collision contribute. The solutions to this order, given by (2.12). 
(2.19) and (2.20), are substituted into (3.2). The integral over the cycle is performed in two 
parts, before the collision ( r  < r*) and after it (r  > r*), with the corresponding parts of 
the solutions used in each part. The result is 

4k2 
P I 3  sin r* + - B ( B  - 3n)2'13sinZr' 

4k 
3QZ 3n3QZ 

-- (3.11) 

Using the map (2.21) for the expression of (2, 6 )  at the'end of the cycle in terms of the 
values at the beginning of the cycle, one finds 

F(B) m -zir'H0(2) + 2 n c ( I  - 2') + B ( I  - 2') + R(cosr*(B) - 1) (3.12) 

. where R = (2k/3nQ2)11/3. Equation (2.21) implies that ( a B f / a 0 )  = 1. The transition 
amplitude is thus, according to (3.8), 

~ ( 2 ' .  2n; 2, 0) = e:'('.'')Z (3.13) 

where the phase Q, is defined by 

@ ( I ,  2') = -2n'Ho(Z) +2n(€ + f ) (2  - 2') - R (3.14) 

and Z is the integral 

Z =  '/Rexpi((Z -2')B+Rcosr'(8+n)JdB. 
2afi -n fr 

(3.15) 

If there is no collision, F(0) takes the value found for r* = 0 (or Zn), as can be verified by 
direct calculation. Therefore, the function r'(8) has been extended to be zero in the region 
of no collision, B < 6". The dependence of R ,  E and r* on 2 has been suppressed for 
convenience of notation. The integral of~(3.8) has been transformed to the region [-a, n]. 
It is now in a form suitable for the non-integer Bessel uniform approximation as presented 
in [46]. The integral representation of the Bessel function used is 

. .  , 

J d T )  = - e-i(~cosE+vE) (3.16) 

Denoting the phase of the integrand in (3.15) by G@)/f ,  the Bessel approximation is 
obtained by the following transformation: 

2n j" rim' -n-im 

(3.17) 

where {, v and A are real parameters to be determined. The parameters of the transformation 
are found, as usual in uniform approximations, by identification of the stationary points and 
by the expansion of the Jacobian in their vicinity. However, in the non-integer Bessel 
approximation an arbitrariness remains since there are three unknowns. It is known that for 
all possible solutions, this approximation reduces asymptotically to the Airy approximation 
[46]. In our case, a simple solution is naturally chosen, since for the special case E = 1 the 
integral (3.15) is proportional to a Bessel function. It will be assumed first that I' > Z and 
that the stationary points are real. 

1 
zG(B)  = -5 COSY - v y  + A 
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Assuming that C and v are positive, one finds the following equations from the 
requirement that the transformation 0 + y maps stationary points onto stationary points: 

(3.18) 

where GI(z) denotes the value of G(B) at the first (second) stationary point. These values 
satisfy 
1 ( I  - 1‘) -(GI + Gz) = - H ( l -  €12) 

2A A 

25 A A R 

(3.19) - ( & - G I ) =  1 - J R Z - E Z ( I ’ - I ) ~ -  1 -(I’-I)arccos[-(I’-Z)] < < . 

Equating the two expressions, one finds the equations for the unknowns <, U and A. We 
choose the solution 

p = R/h 
v = €(I‘ - I ) / A  

A = - ( I  - 1‘) - -(I - I’). 

(3.20) 
R H b  

R A 
One may easily verify that the bansfohation reduces to the trivial one expected for the 
case E = 1. The next stage in the uniform approximation is to expand the Jacobian as 
(dB)/(dy) % po + qo cos y. and to demand that this expansion is identical at the stationary 
points. One finds that po = E and qo = 0. A similar procedure can be carried out for 
the classically forbidden region, where the stationary points are complex. The final result 
obtained with the help of the representation (3.16) is, for I‘ z I, 

This approximation is justified if 5 = RIA is much larger than unity, which holds in the 
semiclassical limit A -+ 0 or I 4 CO. Note also that even though the two stationary 
points become closer to one another as I -+ CO, the value of the phase G(B)/A at these 
points remains well separated, as is easily seen from (3.19). The resulting expression for 
the off-diagonal transition amplitude in the semiclassical approximation is, for I’ z I ,  

K ( P ,  2 x ;  I ,  0) = -exp - -2n‘Ho(l) - 2rr(l’ - I )  - --(I’ - I )  - R &({) . 

By the same calculation, it is found that for I’ c I the transition amplitude is 

K(I‘,  2 ~ ;  I.0) = -exp -( -2n‘Ho(I) - 2n(I‘ - I )  - -(I’  - I )  - R}Jlv((C).  (3.23) 

We now consider the diagonal amplitudes K ( I , h ;  I ,  0). In this case, there are classical 
paths of two kinds satisfying the boundary-value problem-paths with and without a 
collision with the wall. Since the semiclassical propagator is constructed as a sum over 
all classical paths satisfying the boundary conditions, we will consider the two types of 
paths separately and then add their contributions. Denoting by K, the contribution from the 
paths that collide with the wall and by KO the contribution from those that do not collide, 
we write 

(3.24) 

) 3R€ (3.22) 
A A  E 2 

€ 1  H E  

A A  2 

K ( I , ~ R ;  I ,  0 )  = &(I ,  2 ~ ;  I , O )  + K o ( l . 2 ~ ;  I ,  0 ) .  
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In the region of initial angles where a collision occurs (0 > e*), there is an isolated initial 
angle 0 in the middle of the interval which leaves I unchanged, corresponding to T* = r. 
Also the two endpoints of the interval, corresponding to T* = 0 and T’ = ’h, leave I 
unchanged. Note that these two endpoints correspond to two different values of the initial 
angle 8. They mark the borders between the regions with and without a collision with the 
wall; Application of the initial-value representation~to the collision region is similar to the 
calculation of the off-diagonal propagator, and yields 

(3.25) 

where JO is the Bessel function of zero order, and 0 is given by (3.14). 
In the region where no collision occurs (0 < 0*), there is a non-generic degeneracy 

of classical paths. All initial conditions in this interval result in an unchanged action over 
the field cycle, and must therefore contribute to the diagonal propagator. This situation 
is similar to the one encountered for integrable systems, where the action is conserved 
at all times. In this case the propagator is known to be proportional to a &function. A 
straightforward application of the semiclassical approximation (3.1) to this case is, of course, 
not possible since the amplitudes diverge. It can be shown, however, that the initial-value 
repmentation can capture such a singularity [44]. Thisis done by adding a small term 6x1 
to the Hamiltonian, which lifts the degeneracy between the continuum of paths. Then, it 
is possible to derive the form of the initial-value representation for the propagator to the 
leading order in 6. Taking the limit 6 -+ 0 at the end of the calculation, gives the correct 
result for the semiclassical propagator corresponding to the degenerate Hamiltonian. The 
calculation of the propagator in the -momentum representation for a free particle with a 
small perturbing potential, is shown as a detailed example in [44] (second paper). A similar 
calculation in our case yields 

In summary, we find for the diagonal propagator the sum of the two terms, 

(3.27) 

The quantum action assumes the discrete values I,, = nh, and the propagator is a discrete 
matrix in the In) representation. Its elements are, for n’ z n, 

(n’liiln) = hK(iin’,fin) 
- - e-%Xo(ni, ( (  * - E ) s ~ , ~ ,  +,e-i8.f(n‘-n)-it~”(()J. (3.28) 

The corresponding expression for n’ < n is found from (3.23). In these expressions, all I- 
dependent quantities which have been previously defined should be understood as calculated 
at I=nh, for example E = c(nii), [ = R(nh)/h, etc. For small E~ the diagonal elements of 
the matrix have an absolute value close to unity. Neglecting the term of first order in E ,  their 
phase is the free propagation exponent of the unperturbed system.. As already mentioned 
earlier, these phases are nor pseudorandom 128,291. 

The off-diagonal elements are first-order corrections in E .  Remembering the definition of 
E = 1/(3S2(nfi)1/3) and using the asymptotic expansion of J&), one sees that the magnitude 
of the off-diagonal terms decreases slowly as a function of column number, namely as n-’/*. 
For a given column of the matrix, the Bessel function implies an effectively finite bandwidth 
b beyond which the elements decrease rapidly as a function of In - n‘J. The edge of the 
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band is where the argument and order of the Bessel function are approximately equal. This 
width, however, changes with the column number: 
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(3.29) 

From the general structure of a row of the matrix (3.28), one may estimate the staying 
probability at state n after a time r = 27: 

This implies that the characteristic time for transitions (defined, for example, as the time after 
which P(n + n) = l/e) is not the period of the electric field, but rather the unperturbed 
classical period, which is proportional to 1 / ~ .  This is obvious from heuristic classical 
considerations, since the action is conserved for many field periods when the particle is far 
away from the wall. It implies, through uncertainty, that these transitions will not have a 
constant width in energy, but rather a width proportional to E ;  taking into account correctly 
the density of states, one finds that the transitions have a width which is constant in action 
space. 

The increasing bandwidth structure has been noticed previously in numerical 
calculations. In [48], the time dependence of the electric field was chosen to consist of 
two truncated parabolas, similar in general shape to a sine function. Exact methods known 
for a quadratic time dependence were used to calculate the Floquet operator numerically 
in the unperturbed representation. The effective bandwidth was found to fit a power-law 
dependence on the line number, with a power of 0.5-0.7, in agreement with the power of 
$ found in the present work. 

The expression (3.29) for the bandwidth as a function of column number was obtained 
using first-order perturbation theory in E .  It mks the edge of the classically allowed region, 
and is therefore related to the classical equations of motion. A bound on this width, without 
relying on the perturbative solutions, can be obtained directly from the differential equation 
for I (r):  

Since 4 = @mod&, one has 14 - 4 n and 

(3.31) 

The bandwidth at column n is the maximal change in the action variable after one field 
period, fortheinitialconditionI(0) =nR. Inordertoputaboundon IAII = ~ I ( ~ H ) - I ( O ) ~ ,  
consider first the quantity lAI’/31 = 1 I ( 2 ~ ) ’ / ~  - I(0)1/3]. It satisfies 

(3.33) 

where the last inequality follows from (3.32). One finds, therefore, 

(3.34) 
2k 
3 Q ‘  

11(2zp3 - I(O)I’~I - 
This can be stated as a bound on lAIl itself, 

(3.35) 
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where the & sign corresponds to the positive and negative values of A I ,  respectively. It is 
seen that for small E ,  the main contribution comes from the first term, and the power of 
I is found. The corrections are indeed of higher order in E and are proportional to 1(0)1/3. 
Since this is only an upper bound, the prefactors are different from those of the perturbative 
solution. 
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Figure 3. A comparison between the exact Eoquet matrix and the semiclassical approximation. 
( a )  The absolute value of the elements in a typical row (full curve, exact; broken curve. 
semiclassical), for k = 0.8, Q 2 0.1 and A = 3n. (b) Same as (0)  fork = :. P 2 0.45 
and A = 9n, emphasizing the classically forbidden region outside the band. Note the small 
mcillations. not accounted for by the semiclassical approximation. (c) The phases of the 
diagonal elements (full curve, exact; triangles, semiclassid (1n2/3, with 01 = r r / ~ t i l f l ) .  for 
k = 2.0. P % 1.35 aid h = 3n. (d) The phases of the off-diagonal mavix elements in line 
100, fork = 2.0.0 ~i 0.45 and I, = 3 ~ .  Full curve, exact: trlangles, semiclassical as dven by 
(3.14): circles. semiclassical with e(n)(n - m) replaced by %(n) - 7i&). 

A comparison between the semiclassical result (3.28) and the exact Floquet manix is 
presented in figure 3. The exact matrix was calculated using a numerical method suggested 
by Peskin and Moiseyev [49], based on the extended Hilbert space method [50]. The 
absolute values of the matrix elements in a typical row are plotted in figure 3@). The band 
structure, beyond which a sharp exponential decrease of the elements occurs, agrees well 
with the semiclassicd'approximation. The oscillations of the Bessel function are seen to 
account nicely for the structure inside the band. The semi-logarithmic scale of the inset 
emphasizes these features. Figure 3(b) shows a similar comparison, for different parameters, 
emphasizing the classically forbidden region. It is seen that while the semiclassical matrix 
predicts a factorial decay as a function of n, -the numerically calculated matrix, in fact, 
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decreases much more slowly, with characteristic oscillations. The magnitude of these 
oscillations is very small (they cannot be detected on a regular scale plot) and their 
period of oscillation slowly increases in the row. These strucctllre.~ are a result of higher 
order corrections to the semiclassical approximation, and are left for further investigation. 
Figure 3(c) shows the cosine of the phase of the diagonal matrix elements. The slowly 
varying nature of the phase is clearly seen. In figure 3(d) the cosine of the phase of the off- 
diagonal matrix elements is presented. The exact phase is compared with the semiclassical 
result (3.14), and with the value obtained when oo(nft)(nfi - mfi) in (3.14) is replaced by 
E,, - E,. These two expressions are equivalent within the framework of the semiclassical 
approximation. It should be mentioned that the agreement between the exact calculation 
and the semiclassical approximation (3.28) improves as the size of the matrix is enIarged, 
and best agreement is found far from the edges of the matrix, in the vicinity of the centre 
of the band. The largest matrix size in the exact calculations is 400. The value of fi used 
here is A = cpcx = 3nq&/&, corresponding to % = 1. For q = 1 and m = 1 it takes the 
value A = 3rr.20. 

The quasi-energies A of the Floquet operator 0, and the corresponding eigenstates I+*), 
are defined by the equation 

irl+*) = e-iaAl+A). (3.36) 

In the unperturbed n-representation, we denote the quasi-energy states by +(n) and suppress 
their A-dependence. Typical states are shown in figure 4. The eigenstates of the exact matrix 
are compared to those of the approximation (3.28). A most striking feature of this function 
is the existence of a ladder of sharp peaks. A good agreement is found with the semiclassical 
eigenstates, concerning both the positions of these peaks, and the amplitude superimposed 
on the peak structure. Similar peaks were also seen in the steady state distribution obtained 
from evolving the system numerically 1401. The steps in the ladder are of an approximately 
f i  energy interval which corresponds to a onephoton transition, and were therefore termed 
‘photonic states’. This ladder of peaks was also observed in numerical calculations for the 
driven hydrogen atom. For small external fields, such that classical perturbation theov is 
applicable with the field strength as the small parameter, this effect has a general theoretical 
explanation. It has been shown [33] that for a general bound system in a high-frequency 
field, the long-time transition amplitudes between unperturbed action variables obey an 
approximate selection rule (called a ‘quasi-resonance’), corresponding to these one-photon 
transitions. 

From the general structure of the semiclassical mabix (3.28), the following simple 
explanation for the quasi-resonance phenomenon emerges, without the need to rely on 
perturbation theory in the driving k . ,  Consider first a matrix made up of the diagonal 
elements only. Each of the eigenstates of this matrix, corresponding to a given quasi- 
energy An, is peaked on one site, n, which satisfies $‘7&(nA) - An = j ,  where j is an 
integer. There are typically many values of n with A. nearly degenerate, so that there are 
many nearly degenerate states corresponding to a quasi-energy A zz A., with peaks spaced 
at distances 
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(3.37) 

Now treating the off-diagonal terms in (3.28) as a perturbation (since they are small in 
the high-frequency limit), the degeneracy between the different values of n is lifted, and 
combinations of the peaked states are formed; this is the photonic ladder. It should be noted 
that this is an effect of the slow variation of 7&1 as a function of n. In other words, this 
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Figure 4. Typical eigenstatcs of the Floquei matrix (full curve) as compared to those of the 
semiclassical approximadon (broken curve), for k = 2.0, Cl )i: 0.45 and h = 3n. The semi- 
logarithmic inset sbesses ihe amplitude superimposed on the peak structure. 

is because at high unperturbed energies the field becomes of high frequency, i.e. E + 0. 
Consider, for example, a general model for Eo, 

C 
n X d n )  = -(nA)‘ (3.38) 

with (Y and C positive constants. Then according to the above reasoning, the positions of 
the quasi-resonances are spaced at 

n 
ClY 

An = -(nfi)’-O. (3.39) 

Therefore, the peaks are well defined asymptotically, namely they are separated by a distance 
larger than unity, only for a c 1, where the phase of free propagation is a slowly viuying 
function of n. Thus one obtains a simple explanation of the quasi-resonances only in terms 
of the unperturbed energy spectrum and the existence of a small perturbation by the off- 
diagonal terms of the Floquet operator. In our case the magnitude of these elements is 
proportional to E .  The detailed form of the off-diagonal terms, in particular, their phases, 
is not important for the existence of the photonic states. This picture is supported by 
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the fact that the position of the quasi-resonance ladder is continuous as a function of the 
quasi-energy A; this fact is seen in the numerically calculated eigenstates of (3.28). 

The condition for the cxistence of the photonic states can be formulated in terms of the 
characteristics of the binding potential. Consider a system described by the Hamiltonian 

1 1 
%(x ,  p )  = - p 2 +  , V ( X )  +kXCOS(f) 

2 a  
(3.40) 

where V ( x )  is a potential well in the form of a power law V ( x )  - xu ,  with CY z 0. Then 
in terms of the action variable n the energy levels are asymptotically E, - nu, where 
(Y = 2 u / ( u  + 2).  The external field is therefore asymptotically of high frequency for wells 
with a power n c 2, leading to (Y c 1, and for these it is expected that the photonic states 
appear at high enough energy. 

In the next section, an exact solution for the eigenstates will be found on a local scale, 
under certain conditions. This wiU provide a more quantitative description of the quasi- 
resonances beyond the heuristic explanation presented here, which includes their shape, 
average width and fluctuations in the width. In addition, it will enable the explanation 
of the larger scale structures observed in the numerical calculations, as well as the 
justification of some assumptions leading to previous results about the. asymptotic decay 
of the eigenstates. 

4. Investigation of the quasi-energy states 

In this section the nature of the eigenstates of the matrix (3.28) will be studied. The 
properties of these functions will be considered on several scales, from the scale of the 
single quasi-resonance, to that of characteristic decay of the states. A connection between 
our picture and previous works will be made, and some assumptions leading to previous 
results conceming the asymptotic behaviour of the states will be justified. Many of the 
results of this section follow from the exact solution of a local linearized approximation of 
the semiclassical eigenvalue equation. The resulting model and its solution are presented 
in subsection 4.1. The structure of the single quasi-resonance predicted by the linearized 
solution is studied in subsection 4.2. In particular, it is argued that in the semiclassical limit 
the eigenstates of the full (nonlinear) system are combinations of such quasi-resonances. 
The resulting asymptotic behaviour of the eigenstates is explored in subsection 4.3, while 
the intermediate structure, covering many quasi-resonances but not asymptotic, is studied 
in subsection 4.4. 

4.1. The linearized model and its exact solution 

The eigenvalue equation for the Floquet operator in the n representation is 

L I ~ , ~ + , , ~  = e-*A+,, . (4.1) 
n' 

(Recall that in our units, the field period is 2n.) In the semiclassical initial-value 
representation used here, the matrix ~~ elements can be written as (see equations (3.8), (3.9) 
and (3.28)) 

(4.2) 

where 
1 2 s  R 
h h f i  
- F ( B )  = --7&(nh)+2ir€(n-n')+B(n -n')+-(cosZ*(O)- 1). (4.3) 
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Here E and R are implicitly n-dependent quantities, and r* was extended to include the 
whole 0 region, as in the previous section. Denoting r =n'-n, one can write the eigenvalue 
equation in the following form: 

where the sum over r has been extended to -CO. This is justified for large n, since in this 
case the tail of the sum iccludes exponentially small contributions. Also the translation 
operator on the lattice e@, defined by ei'& = @"+I, was introduced. Now using the 
expression for the mahix elements, the sum over r in (4.4) can be performed 

Since R is a slowly varying function of n ( R  - nil3), it will be assumed that acting on it 
with the translation operator does not change it much, and therefore the function and the 
operator commute. Since the values of r effectively participating in the sum are within a 
bandwidth of the matrix, this approximation means that the function R(cosr* - 1)/R does 
not change much within one bandwidth. Explicitly, this condition is 

(4.6) 

Then, the summation of (4.5) yields the following eigenvalue equation: 

(4.7) e-i$xo(nh) L R [ C O S ~ ( ~ ) - ~ ]  @ - -i?.r%& en . -e  
where? = r*(S - 2x6). or in explicit form 

2xc - e e c 2 x e  

e > 2zc  
?(e) = ~ (  

Equation (4.7) is the eigenvalue equation for a kicked system, with a 'kinetic energy' term 
which is proportional to n2l3, and a kick that depends adiabatically on n. 

Equation (4.7) can be solved locally, if one exploits the slowly varying nature of the 
'kinetic' energy and approximates it by a linear function 

(n - no) = xo(nofi) + c~f i  (4.9) ?fo(nfr) = - ~ z f i ) ' / ~  % xo(n0fi) + - 
where E = (n -no). This is a good approximation as long as the correction is much smaller 
than n, namely in a region around no of size Sn satisfying 

1 
2 s  

Jn << 3&iiFn;J3. (4.10) 

This region increases as no + CO. In a region of this size in the vicinity of no, the function 
<[cos i(b) - I] can be considered to be independent of I ,  as long as (4.6) holds. Therefore, 
in this approximation we have the eigenvalue equation of the linear rotor, 

e - i ~ 6 i  e n  - A V ( & )  $A = e-iZ7(%-M *A (4.11) 

with a 'kicking potential' 

;R[cos(B/E) - 11 0 c 2zc 
e > 2RE 

V ( 0 )  = (4.12) 
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and a constant term which shifts the quasi-energies: AO = 'Ho(nofi)/f i .  The operator f is 
the momentum conjugate to 6 .  This problem has an exact closed solution in the form of a 
series in the B representation [34] 

N Brenner and S Fishman 

(4.13) 

where V(B) = VmSms, and p is an integer defined by the equation 

I 
2n(h - ho) = - VO + p 2 7 ~  [mod 2 ~ 1 .  (4.14) 

f r  

In our case. we have for the Fourier components 

and thus the function of (4.13) is found to be 

(4.15) 

(4.16) 

where ( = R/k. Note that the Fourier series decays asymptotically as l/m3. This is 
related to the fact that the potential V ( 0 )  has a discontinuous second derivative. The sum 
in the exponent can be summed exactly, and the function can be written explicitly in the 
Il) representation, 

(4.17) 

where B = </2sin(a/6). Some details of the derivation are presented in appendix C. 
The function in (4.17) is composed of a chain of narrow peaks, which is just the 

ladder of quasi-resonances, or photonic states. In addition, it has a characteristic width, 
determined by the width of the Bessel function. Since our solution is only local, its typical 
width should be compared to the size of the region over which the linearization holds 
(condition (4.10)). The local approximation is consistent if the function decays within the 
regime of linearization, since otherwise a strong sensitivity to the boundaries of the region 
is expected. The condition for consistency of the linearized solution is 

(4.18) 

Note that this condition is compatible with (4.6). namely with the approximation that led 
to the effective kicking propagator. 

In the rest of this section the properties of the function (4.17) will be studied, and 
will be tested numerically against the eigenstates of the semiclassical matrix (3.28). The 
full wavefunctions will be constructed by matching various regions where (4.10) holds. 
The main consequence of this procedure is that the eigenstates are combinations of sharply 
localized quasi-resonances. This result will be used to justify and extend a previously used 
method, in order to draw conclusions about the asymptotic nature of the states. 
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4.2. Structure of single quasi-resonances 

According to the local solution (4.17), the quasi-resonances have the shape of the function 
sinc(x) =~sin(x)/x on a lattice, separated by a distance of approximately 116. 

Figure 5 shows a single quasi-resonance in an eigenstate of the semiclassical 
matrix (3.28), compared to the same quasi-resonance in the linear approximation to this 
function, equation (4.17). The value of p was found numerically from (4.14). The position 
of the peak, as well as its shape, fits well to the theory. For the parameters of figure 5, 
the condition under which the theory was developed are fulfilled; r=x 0.19. The condition 
for the consistency of the linear solution 71 << 1 is similarly satisfied. It should be noted, 
however, that good agreement on the scale of the single quasi-resonance is found by the 
same calculations also for parameters where these inequalities are violated. 

0.15 

semiclassical 
- 0.1 
d 
3 
v 

0.05 - 

0 
-20 -10 0 10 20 

n-n. 
I 

Figure 5. A comparison between a quasi-resonance in  an^ eigenstate of the semiclassical 
matrix (squares). and fhat of the corresponding eigenstate of the local equation, equation (4.17) 
(rriangles), fork = I ,  R % 0.54. 1 = 3r and a, = 14970. 

In principle, one would expect that under the conditions of validity (4.18). the linearized 
solution will fit the semiclassical eigenstate over a range of many,quasi-resonances in the 
asymptotic limit. In practice, however, the increasing bandwidth limits the size of no 
around which the semiclassical matrix can be constructed and diagonalized numerically. 
Therefore, numerical calculations can be performed only in a region of parameters where 
the linearized solution is valid on relatively short scales. Note, that the local solution 
(location of resonance, its shape and height) depends sensitively on the changes of the 
local parameters 116 and c, since they appear in the argument of a trigonometric function 
(see equation (4.17)). For example, in figure 5, the change in these parameters between 
neighbouring quasi-resonances is of order 0 . 1 ~ .  The peaks next to the one shown in the 
figure, do not fit the local solution so well in their shape and height. 

In order to go beyond the region of validity of the linear approximation, i.e. to ‘sew 
together’ the different regions of linearization, we now construct a local approximation for 
the wavefunction corresponding to a quasi-energy A near the j th  quasi-resonance. Starting 
from the solution to the local linearized problem (equation (4.17)), with a quasi-energy A, 
we consider the argument of the sinc at a quasi-resonance peak. This peak, denoted by li, 
is determined by the condition that the argument is closest to zero. We define the deviation 
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from zero, S j n ,  by the following equation: 

(p - 1j)n + </2 - mn/6 = Sjz . 
By definition, ISj( < $. Substituting the expression (4.14) for p, 

2 i r q  = 2x(h - ho) - - + 2nr 
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(4.19) 

(4.20) vo 
h 

r E 2 

and using the explicit value (4.15) for VO, we find that Sj  satisfies the following equation: 

d jh  = h(h - J+) + j h  - 6hSj (4.21) 

where j = r - m. Recalling that djh  is the unperturbed energy of the linearized model 
at the peak lj, one sees that in the framework of this model Sj  is just the detuning of this 
energy from exact resonance with the electric fieId, normalized by the level spacing Eh. 
The quasi-energy sets the origin of the quasi-resonance ladder, and the peaks are located at 
equal distances j h  in energy, with a mismatch EhSj. The quasi-resonances are labelled by 
j which is their position on this ladder. 

Now consider an eigenstate corresponding to a quasi-energy A, of the original (not 
linearized) problem, with the slowly varying energy -n2l3. In the close vicinity of a 
given quasi-resonance, it can be approximated locally by an eigenstate of the linear kicked 
rotor (4.1 I), with the local values of E ,  < and ho, and with the given value of A. The quasi- 
resonance at nj will then be described by a sinc function with Sj satisfying the following 
equation: 

(4.22) 

This equation follows from (4.21), since lj = (nj -no) and .Eno = hoh. If the linearization 
centre no is close enough to the quasi-resonance, and for large enough no. one may 
approximate hc % (8En/8n),, and E,,+~(nj - no)h % E.,, with a correction term that 
is of higher order in E ,  so that the parameter characterizing the quasi-resonance centred at 
action nj is just Sj satisfying 

E,,, + e(nj - no)h = hh -k j h  - chSj. 

(4.23) 

Thus, the eigenvalue h sets the origin of the quasi-resonance ladder corresponding to the 
state, and the quasi-resonances are numbered by their position j on this ladder. Each is 
described approximately by a sinc function, 

(4.24) 

characterized by the peak position nj and the normalized detuning Sj  of (4.23). This 
equation was obtained in a region where linearization holds around Eno. Now the centre of 
linearization can be varied, resulting in a local relation between E.,. j and S j .  

The sequence of peak positions nj and normalized detunings S j  for a sequence of 
neighbouring quasi-resonances is estimated by writing, near the j th  quasi-resonance, the 
energy as a function of a continuous action: 

1 
2Q j h  +Ah = E,,, + Sj  Z E(nj +ai) = -(h(nj + S j ) ) 2 / 3 .  

n1 

(4.25) 

Inverting this relation, one finds that 

[ [2Qh(h+ j)J3/’} 
h 

nj = int (4.26) 
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and 

(4.27) 

where int [ x )  is the integer part of x and frac {x} its fractional part. Therefore, the Sj form 
a pseudorandom sequence as a function of the quasi-resonance number j [28, 291, with a 
uniform distribution in I-;, ;I., 

In figure 6, sections of typical quasi-energy states are compared to sequences of the 
single-resonance approximations (4.24), with parameters nj and Sj as predicted by (4.26) 
and (4.27). In figure 6(a) the state was obtained by diagonalization of the numerically 
calculated exact Floquet matrix, whereas in figures 6(b) and (c) the states are those of the 
semiclassical matrix (3.28). The value of A used in (4.26) and (4.27) was obtained by a 
fitting which minimizes the mean-square deviation from the numerical state. It was found 
in the close vicinity of the numerical eigenvalue corresponding to this state. The difference 
was of the order of for figures 6(b) and (c). The reason 
for this difference is probably the non-semiclassical behaviour in the small-n region for the 
exact matrix, and the deviation from unitarity of the semiclassical matrix. The maximum 
of each sinc was normalized to the amplitude of the wavefunction at the quasi-resonance 
peak. Thus the calculation only tests the assumption that the eigenstates are formed by the 
sequence of sinc functions (4.24) with the values of nj and Sj predicted by (4.26) and (4.27). 
It does not address the question of their amplitudes. For clarity, only a small part of the 
n-values are shown, but a similar agreement holds throughout the whole basis used. In the 
case of the exact matrix, the agreement improves for higher values of n, as expected. The 
integrated square difference between the state obtained by diagonalization and the chain of 
local approximants (4.24) is of the order for (b) and (c). The 
quasi-resonance structure of the shape (4.24) with the values of nj and Sj  as predicted by 
(4.26) and (4.27). is found also for eigenstates of blocks of the semiclassical matrix which 
are smaller than the bandwidth b(n), in a region of parameters where the condition (4.6) 
is swongly violated. This is the case for the parameters of figure 6(c). where q1 x 19. 
We conclude that this structure is not sensitive to boundary conditions, giving an additional 
support to the ‘sewing’ procedure for the wavefunctions. 

On the basis of the local linearization, and with the support of numerical tests, we 
thus conclude that the quasi-energy state in the n representation can be constructed as a 
linear combination of the functions Qj(n), with a sequence of nj and Ss satisfying (4.26) 
and (4.27). Their relative weights cannot be determined from the linearized approximation, 
since these represent the structure of the function over a wide range,~where the linearization 
does not hold. Note that the functions Qj(n) are not orthogonal, and their overlap sum is 

for figure 6(a), and 

for figure 6(a), and 

(4.28) 

From equation (4.27) it is clear that the difference between various values of Sj is, in general, 
of order unity. Equation (3.37) implies that 

€In, -n f l  =- 1 for j # j‘ (4.29) 

consequently the magnitude of the overlap sum is bounded by € ( I  = n,fi), where 
m = min(j, j ’). It decreases~ as a function of l j  - j ’ l. Orthogonality is approached in 
the limit E + 0. The eigenstates will thus be assumed to take the approximate form 

(4.30) 
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Figure 6. Test of the general form (4.30). with the parameters Sj satisfying (4.27) and with 
arbitmy amplitudes A;. for the eigenrtates of (a)  the exact matrix, and (6) and (c) the 
semiclassical matrix, for Q - 0.54 and Ti = 3x. A small portion of the state is shown in 
the figure, but a similar agreement holds for the whole n-basis used. For the parameters of (c). 
the conditions of the theory are strongly violated, ‘11 c 19 (see equarion (4.6)). 
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Figure 7. The width r(4) of quasi-resonances as a function of their position n. The data are 
collected from many eigmstates~of the semiclassical matrix with k = 3, Q cs 0.19 and h = 6n. 
The full curve shows the average as predicted by (4.31) with 6 uniformly distributed. 

where Qj(n) is defined by (4.24), with parameters nj and 6'' satisfying (4.26) and (4.27). 
The expansion coefficients A: form the slowly varying envelope superimposed on these 
quasi-resonances. Because of the pseudorandom phases of the sinc functions Qj^(n), at 
any given point only one or two functions contribute considerably to @:. Therefore the 
amplitudes A: determine the long-range behaviour of the state @:. In the next subsection, 
an approximate eigenvalue equation for the amplitudes A: will be constructed. 

The description of the eigenstates by a combination of sinc functions was verified 
numerically for several states. In order to test it for a large number of states, the width of 
single quasi-resonances will be studied statistically. Since the sinc function decays slowly 
away from its peak, it is convenient to define its width r ( D )  as the number of unperturbed 
states included in 1/D of its peak value, where D is some positive constant. It is seen 
from (4.24) that this width is predicted to be independent of parameters, and is only a result 
of the deviation of the argument of the sinc from an integer multiple of n. This can be 
related intuitively to the fact that the typical time scale for transitions in this problem is 
the unperturbed classical period 27c/6, since transitions occur only near the wall (see also 
(3.30)). By uncertainty, this defines a linewidth in energy of AE - fi6, and taking into 
account the density of states, (aE,/an)  =f ie ,  the corresponding width in n space is found 
to be of order one. Note that the use of Rabi's formula [32] is not justified here since many 
levels are involved in the transitions. Indeed, Rabi's formula gives a typical width of the 
quasi-resonances which depends on parameters, and, in particular, grows as n113. Figure 7 
presents the widths r(4) of quasi-resonances as a function of their peak position in n. The 
data are accumulated from many different eigenstates of the semiclassical matrix (3.28). It 
is seen that the widths fluctuate around a mean value, with no systematic dependence on n. 
The full curve is the average as predicted by the calculation presented in what follows. 

Using equation (4.24) and the definition r ( D )  for the width, one finds that 

r(D) = 1 + l l ~ l ( ~  - 111 + L161(D + 1)1 (4.31) 

where IxJ is the integer part of x ,  while S is the value of the detuning Sj for the quasi- 
resonance in question. The derivation of this function is described in appendix D. Now the 
statistical distribution of widths is obtained from this function for 6 uniformly distributed 
in the interval [ - 5 .  11. The mean value of this distribution is the full curve depicted 
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in figure 7. The predicted distribution was tested numerically for the quasi-resonances in 
the eigenstates of the semiclassical matrix. The results are shown for D = 8 in figure 8. 
Note that the distribution is non-monotonic, and exhibits a non-trivial behaviour which the 
semiclassical data closely follow. It is, however, a single-resonance approximation; effects 
of neighbouring resonances on each other are ignored, and therefore larger deviations are 
expected for high values of r(8). For the same reason, the whole description is valid onIy 
for values of D much smaller than the separation between resonances. 
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Figure 8. Dam collected from many eigenstates of  the semiclassical mavix (dxk ban) with 
k = 1. S2 sz 0.54 and Tz = 3n, are compared to the and*cd prediction, equation (4.31) with 6 
uniformly disuibuted (light bars). 

#.3. The asymptotic behaviour of the eigenstates 

The results of the previous subsections can be used to justify and extend the procedure 
presented by de Oliveira et a1 [32], where the eigenvalue equation for the Floquet 
Hamiltonian was projected onto the photonic states. We first introduce the Floquet 
Hamiltonian corresponding to the unperturbed system EO: 

.. a 
KO = 'Ho - ih- . a t  

It has a basis of eigenstates 

In, j) = In)e+' 

(4.32) 

(4.33) 

where In) are the eigenstates of Eo, with corresponding eigenvalues (E. - hi). Now the 
full Floquet Hamiltonian is f = li: - iha/ar, with E the full time-dependent Hamiltonian. 
We write the eigenvalue equation for the operator R in the ln, j )  representation, 

where r$k,j = (n, j l&). Note that to an eigenstate of fi with eigenphase A corresponds an 
eigenstate of with eigenvalue fiA. In the unperturbed case, k = 0, the eigenstates are just 6- 
functions at sites nj satisfying A = (.En,/h-j). This sets the relation between the states In, j) 
and the states In) for a given A. The perturbation mixes different values of j corresponding 
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to approximately the same A, to form the ladder of quasi-resonances; therefore the index j is 
identified as the quasi-resonance number. From the previous subsections, we know that for 
k > 0 the states are combinations of sinc-functions Qj(n) with amplitudes to be determined. 
We now use this knowledge to modify the method of [32], and construct an equation for 
these amplitudes. We introduce the following approximation for the wavefunction: 

(4.35) 

Using equation (4.23) for the relation between nj and A, equation (4.34) reduces to an 
approximate equation for the A:: 

where cj is the value of E near the j t h  quasi-resonance. This is an approximate eigenvalue 
equation with a nearly vanishing eigenvalue. The matrix elements are known to be 

hz 1 
(nliln’) = -- 

(3??!2)z (En - E,.)z . 
(4.37) 

We approximate E., - E,. X h - (n‘ - nj+l)di, since the main contributions are from the 
states around the neighbouring quasi-resonances, whose peak-to-peak distance in energy is 
f i .  The sums over n’ in (4.36) can now be performed with the help of the relation 

(4.38) 

Near the jth quasi-resonance ,one finds, using the approximation E., x j h  (see 
equation (4.23)), 

(4.39) 

consequently (4.36) takes the form 

This equation is very similar to (6) in [32], where a projection onto single n-states was 
used. The correction due to the finite width of the resonances results in the replacement of 
the diagonal part by a sine function (instead of a modulo function), and a correction to the 
off-diagonal hopping which vanishes in the asymptotic limit E + 0. In deriving it, we have 
used the specific form of the eigenstates on a local scale, namely the locations and shapes 
of the quasi-resonances. 

If sin(n8j) were a random sequence, the exact results of [41] would ensure the existence 
of power-localized eigenstates for (4.40). The power would then be proportional to the 
square of the diagonal potential, implying in our case a power proportional to @ Q 3 / k Z ) .  
Figure 9 shows the same calculation as presented in [32], but for the model of (4.40). 
Starting with an arbitrary initial vector (At, At) and using the transfer matrix technique, 
one finds that the norm of the vector iterated a large number m of times, increases as mp. 
The power fi is expected to be related to the power of decay of the eigenstates of (4.40). It 
can be extracted from the following relation [32]: 

(4.41) 
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Figure 9. Results of the same calculations as in [32], but for the refined model (4.40). (a) The 
large-m behaviour of the normof a vector under the action oftransfer matrices corresponding to 
the model, fork = 0.07. Ti = 3rr and C2 = 0.106. The starting point for iterations was no = 800 
and the resulting power is p = 6.2. The graph is an average over 51 values of h around A = 0. 
(b)Thedependenceofthe power ofgrow h.6 on k. Thebest fit isln.6 = (-2.02iO.02) Ink-3.5. 

An example of such a calculation is presented in figure 9(a). The dependence of @ on k 
with C2 0.106 held fixed, is plotted in figure 9(b). The best-fit power to the graph is 
-2.00 2c 0.03. This value is consistent with the results of [32,41]. Thus, this calculation 
supports the assumption that the minor differences between our model (4.40) and the one of 
[41] do not alter the conclusions concerning the power-law decay of the eigenstates. These 
differences include the fact that the diagonal potential is pseudorandom instead of random, 
and that the hopping term is not constant but weakly dependent on position. Notice that 
this dependence decreases in the asymptotic limit E + 0. 

The conclusion of this analysis is thus identical to that of [32]: the eigenstates are 
predicted to be asymptotically power-law decaying, with a power 

(4.42) 
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as a function of the quasi-resonance number j .  As a function of n, the asymptotic decay 
is with a power of (2@/3). The constant of proportionality C, is found from numerical 
calculations to be approximately 10 (compared to 12.2 of [32]). Thus the critical field k, 
for which the power of decay as a function of j is less than 4 is k, x 4 . 4 7 m  (compared 
to 4 . 9 m  of 1321). Our analysis was based on detailed information concerning the local 
structure of the quasi-resonances in the state, and justifies most of the assumptions of 1321. 

4.4. A local-scale crossover 

From the smcture of the quasi-resonances and the shape of the semiclassical matrix, a 
crossover in the behaviour of the function on a local scale can be predicted. There are 
two basic length scales in action space: the bandwidth b(n) of the Floquet matrix and the 
distance An between neighbouring quasi-resonances. Considering that transitions are most 
effective between quasi-resonant states, one can argue heuristically that in the region where 
the b(n) < An msitions are less likely to occur [33]. In this regime, absorption of even 
one photon involves transition through a classically forbidden region. The phases at the 
quasi-resonances are pseudorandom and ~ therefore exponential localization is expected. in 
this region. The condition for this is 
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Figure 10. Two typical f o m  of the eigenstates of the semiclassical matrix on the large scale. 
The point n, that is predicted by the theory is marked. 
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(4.43) 

In connast, if b(n) >> An, there can be multiphoton transitions within the classically 
allowed region, transitions will occur more easily and the asymptotic power law found in 
the previous subsection is expected. This defines a critical value of n,, below which the 
functions are expected to be localized: 

(4.44) 

A numerical study of this crossover was performed in order to check the scaling law (4.44). 
For this purpose, approximate matrices, given by (3.28), of size up to 1200 were used. 
Two typical quasi-energy states of such matrices are shown in figure 1O(a) and (b), with 
n, marked on the figure. (Equation (4.44) gives only the scaling; a numerical prefactor is 
extracted from the calculations, as will be explained below.) As seen from the figure, this 
value is not a well defined point but rather a region of crossover. In addition, its exact 
location is slightly different in each quasi-energy state. In order to study its dependence 
on k and Q, some averaging procedure is required. It turns out that technically the states 
of the kind shown in figure 10(b) are easier to handle numerically. For each value of the 
parameters k and S2, the approximate matrix (3.28) was diagonalized numerically. All the 
states with an absolute value having the general form of figure lo@), were picked out and 
smoothed around the photonic peaks. Since the positions of the peaks are different in each 
state, this resulted in smoothed states that are sampled each at a different set of discrete 
points. Therefore, in order to average over all these smoothed states, binning had to be used. 
The size of the bin was chosen so that a statistically significant number of sample points 
(several hundreds) were counted in each bin. The resulting averaged state has a smooth 
crossover, of the form - 1 -e-x"lnc. From this, the point n, can be extracted, which 
in general depends on K. However, for several choices of K which are of order unity, the 
scaling of n, with the parameters k and Q turns out to be the same. The results of these 
calculations are summarized in figure 11. Each point on the graph corresponds to a different 

Q Res0.45 
0 k=l 

400- 

3x10-= S X l O 4  

R6/k3 

Figure 11. The scaling of n, with k and Q. Different values of Q with k = 1 (circles); different 
values of k with Q 0.45 (stan). h = 372 for all poins. Each point was obtained by averaging 
the absolute value over many states, resulting in a smooth function such as that in the inset, 
conerponding to the point marked by an mow. 
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set of values (k ,  a). The error bars result from the bin size.. The inset shows an example 
of one of the averaged states from which a value of n, was extracted, with K = ln2. The 
corresponding point in the main figure is marked by an arrow. It is seen that the theoretical 
scaling law agrees perfectly with.the numerical results. Allowing for a numeric prefactor 
in (4.44), this is found from the figure to be approximately 0.65. 

5. Summary and discussion 

In this paper, we considered the model system (1.2) as a prototype for a class of periodically 
driven one-dimensional systems which are inherently different from the kicked rotor, 
although the classical motion is chaotic. This class is characterized by the unperturbed 
system having a spectrum which is asymptotically a'slowly varying function of the main 
quantum number n. It includes, among others, the bound spectrum of the hydrogen atom, 
and power-law potential wells with a power smaller than 2. A general method for the 
approximate analytical treatment of such systems was suggested and applied in detail to the 
system (1.2). 

For the solution of the classical equations of motion, perturbation theory was used, wilb 
a small parameter E .which is the ratio between the unperturbed frequency and the driving 
frequency. This expansion becomes better at high energies. In particular, for every strength 
of the external driving, there exists a regime high enough in energy such that the expansion 
is valid. The small parameter is treated as a dynamical variable, and its time variation is 
related to that of the canonical action variable. The classical trajectories for one driving 
period are expressed in terms of a power series in E .  Since the driving period is a very short 
time scale in the problem, a semiclassical calculation of the Floquet operator is expected 
to be very accurate. This calculation is performed using a uniform (Bessel) approximation, 
taking as input the approximate classical trajectories. The resulting Floquet matrix was 
found to have an effectively finite bandwidth, but its width at the column n is proportional 
to n2I3. To the leading order, the diagonal elements are the free-propagation factors,'their 
phases depending on the unperturbed energy levels E.. The off-diagonal elements are small, 
of the order E .  The characteristics of the approximate matrix, as well as its eigenstates, 
were compared to those of the exact matrix by numerical calculations, and good agreement 
between the two was found. 

The increasing bandwidth structure of the propagator was found numerically for the 
model system (1.2), with cos replaced by a periodic function consisting of two truncated 
parabolas [48]. A power of 0.5-0.7 was fitted to the bandwidth. All the calculations of 
the present paper are relevant for that driving as well, and a bandwidth varying as n2/' is 
predicted theoretically. For any time dependence that generally resembles a sine function, 
i.e. a smooth function with one positive and one negative extremum, there are two classical 
trajectories which coalesce, and therefore the Bessel approximation is applicable resulting 
in a form of the Floquet matrix similar to the one obtained here. A driving by &functions 
in time is more problematic, and a direct application 'of the method presented here is not 
possible. Indeed, in numerical calculations of the Floquet matrix for this form of driving 
it was found that it does not have a band structure, but rather a power-law ,decay, and that 
the eigenstates exhibit an asymptotic decay with the same power [35]. 

From this work the following general form of eigenstates of the evolution operator 2,? 
emerges. The states are combinations of quasi-resonances that are approximately equally 
spaced in energy. The lineshape of all the quasi-resonances is similar, and depends only 
on their relative position compared to the lattice in action n. The analytic form of these 
quasi-resonances is given by (4.24). On the quasi-resonances is superimposed an envelope, 



6006 

which is exponential for n c n, and a power law for n >> n,. The crossover value n,, which 
is proportional to (F12S26/k3), is the value of n for which the bandwidth of the semiclassical 
matrix is of the order of the distance between quasi-resonances. In figure 10 representative 
eigenstates are depicted. If the maximum of the state is below n,, the shape is similar 
to figure lO(a), while if it is above nc the shape is similar to figure 10(b). For n much 
larger than n,, the envelope decays with the number of quasi-resonance j as a power law, 
namely as j - p ,  where j3 is proportional to (FIQ3/k2) (see equation (4.42)). The power of 
decay as a function of n is (2j3j3). For 6 < these states are not normalizable, while for 
j3 > 4 they are normalizable. This last result was also found in previous works [32,40]. 
In this work, it was obtained in the framework of a model for the envelope superimposed 
on the quasi-resonances, which was developed by ‘sewing’ together solutions of a linear 
local approximation to the semiclassical evolution operator. Our model for the envelope 
(4.40) is a refined version of the model proposed by de Oliveira et al [32]. The present 
work justifies the basic assumptions of this previous work, and provides many details on the 
structure of the eigenstates on local scales. Because of limited computer power, we could 
not perform a numerical test of the asymptotic behaviour of the wavefunctions and of the 
long-time dynamics of the exact model. It is quite possible that the delocalization transition 
found in earlier numerical calculations [40] for a finite basis, results from the variation of 
n, compared to the size of the basis, rather than the transition of j3 through its critical value. 
This issue should be left for further investigation. 
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Appendix A. Second-order solution for 8 

In this appendix the next correction to the time dependence of e will be calculated for 
completeness. This corresponds to the second order in E, and takes into account the leading 
order time variation of the action variable. 

We assume a formal expansion for e ( r )  in the small (constant) parameter EO, 

e ( r )  = e o ( r ) + B 1 ( ~ ) - ~ 0 + 8 2 ( ~ ) 6 ~ + . . .  (-4.1) 

and a similar expansion for €(T). To second order, we substitute the solution E(T) to the 
corresponding order in the equation of motion (2.11) for O(r). 

Consider first the case of a cycle with no collision, 00 e 8;. In this case, we use the 
first two terms of (2.18) for E(T) to write the equation for e(r) ,  

(A.2) 
1 6 = 40 + .$-EO + 4 2 4  = 

~ 1 2 ~ ( e ~ + 8 ~ ~ ~ )  - (e,2+zeOel-E0)i COST 
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where the dot denotes derivative with respect to 5. Comparing equal powers of €0 and 
inteegrating, the solution to second order is found to be 

e(?) = ~ ~ + ~ ~ t + - - s ~ a ( ~ ~ ) s i n ~ + - - ~ ~ ( ~ ~ - ~ [ 2 ~ s i n ? + 3 c o s ~ - 3 ]  
k k 

7 6  H 2  0 

~ ~ ( 8 0  - n)a(eo) sin2 5 .  (A.3) 

This solution consists of a linear time dependence, with oscillatory terms superimposed 

3k2 -_ 
2n4 O 

on it. At the end of the cycle. t = 2rr, one has 

e(2n) = eo + Zn€o  (A.4)~ 

which is the same as the first-order result. 
For a cycle in which a collision occurs, the two expressions, before and after the 

collision, must be distinguished. For the first one, T i t*, the equation for B is the same 
as (A.2), and the solution is (A.3). It should be noticed that now the last term in (A.3) is 
of order e:; since for a cycle with a collision a(&) = U(EO). After the collision, t z T*, 
one has to substitute in the equation for 8(r) the corresponding expression for ~(t), 

(-4.5) e ( t )  = ~ ~ - ~ ~ ~ . [ ( ~ ~ - 3 x ) s i n ~ + ~ ~ s i n s * ]  2 k  
H 

and to require the explicit periodicity in a ( @ )  to the order €0 

a(@)  zz 2n(eo i- elco - 211) - ((80 - 2x1' + 281(8o - 2n)co). (A.6) 

The solution to second order is, for t > t*, 

~ ( t )  = 00 + cor + -eo [(?(eo) sin t + b(00) sin T'] + -c*(eo - x )  
k k 

k 2k2 
3 9  H 2  

+-e2(3x -80)[2rsins + c o s t ]  - -e: [(T +t*)s inr*  + cos?*] (A.7) 
x2 O ir 

where we defined the following functions of BO: 

(?(SO) = 2?r(f30 - 2n) - (80 - 2n)' b(&) = a(&) - (?(eo) . (A.8) 

Note that the first order term in (A.7) differs from that of (2.12) by a quantity which is of 
order e2. The mapping for the canonical variables I and 0 can now be written, to this order 
of the approximation, as 
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Appendix B. Area preservation of the map 

In this appendix, the Jacobian of the perturbative classical map is calculated to lowest order. 
Due to the dependence of the small parameter E" = w o ( I J / Q  on the action variable, it is 
not aprion' clear to what order the map should be calculated so that its Jacobian is correct 
to first order. In general, the classical mapping has the following fomx 

N Brenner and S Fishman 

=i.+~(e,,r*)1,23+~(e,,r')1,113+... (B.1) 
(B.2) 

where t* depends on both I,, and e,,. In order to see which terms contribute to the Jacobian 
to first order in E", the partial derivatives (LI7*/LIIn) and (ar'/ae,) must be calculated as 
a power series in E,.  The collision time r' is defined by the equation 6(7*) = 2 a ,  or 
explicitly, to second order in E ~ ,  

en+1 =e, + c(e,, +o(e,, 7*)1,-~/~ + . . . 

k k 
K n' 2 n  = 6. + ~,t* + -ena(6,) sin r* + -&en - n)[27' sinr* + 3cos r* - 31. 

Differentiating both sides of the equation with respect to 0, yields 

(B.3) 

2k 
39 63.4) 

-1 k (n - e,,) sin z* + cos r* + -(n - e*)r* cos r* . 

Making a change of variables correct to first order in E, ,  namely r* = (2x -0 , ) /~ .+0(~ , ) ,  
one finds that, in terms of the variable I, 

k .  (5) = -3Q1,'/3 + - smr' + U ( 4 3 .  a 

A similar calculation for I yields the following partial derivative: 

(B.5) 

Taking into account the fact that C is constant and that A does not depend explicitly on e., 
one concludes that the leading contributions to the Jacobian come from the first correction 
to I,, namely from A,  and from the two first corrections to e,,, namely C and D. The 
resulting partial derivatives are 

where in the last derivative, the expression ( 2 x  - e,) was replaced by 47* ,  which is 
equivalent to the leading order. It is therefore seen that the deviation of the Jacobian from 
unity is of order In -213 . , i.e. of order €2. 
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Appendix C. Details of the exact solution to the local eigenvalue equation 

In this appendix some details of the derivation of the wavefunction (4.17) of the linear 
model are presented. The series in the exponent of (4.17) can be summed exactly by using 
the identity 

In our case p = 1 / ~ ,  and the equation can be integrated to find the sum 

Thus the quasi-energy eigenfunction in 0 is 
~~ ~ 

(C.3) 

Now the Fourier coefficients of this function must be calculated to get the quasi-energy 

sin[(@ - a)/€] 
sin[rr/~] 

states in the hepresentation: 

Defining B = </2,sin(a/6) and using in this the expansion 

where Jm is the Bessel function of integer order m, one obtains the function (4.17). Notice 
that this function decays asymptotically as 1/13 as expected, although each term in the 
infinite sum decays only as 1/l.  

Appendix D. Calculation of quasi-resonance widths 

In this appendix the distribution of quasi-resonance widths is calculated. It will be assumed 
that the quasi-resonances are independent. This is justified asymptotically, although the 
decay of each quasi-resonance can be relatively slow, since their separation grows with n,  
whereas their typical decay is independent of parameters. 

Using the local sinc approximation for the single resonance, ( 4 3 9 ,  and denoting by 
M = ( n - n j )  the distance from its peak, we write 

(D. 1) 
The maximum is at M = 0, and the relative magnitude of the function at point M is 
IS/(M + 6)l. Defining the width T(D) of the quasi-resonance as the number of lattice sites 
included in 1/D of its maximum value, one finds (4.31) for the width. It is seen that with 
no deviations, 6 = 0, the width is 1. For any given D ,  one can calculate the width as a 
function of 6. For example, choosing D = 4, this function is 

sin[(M + 6)n] - (-1)Msin(z6) - 
( M  + 6)a ( M + S ) a  . 
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Now using the information that the S form a pseudorandom sequence with a uniform 
distribution in the interval [-1. 13, the resulting probability distribution for the widths 
is P(1) = 7, P(2)  = 6, P ( 3 )  = g ~ a n d  P ( 4 )  = 2. Its average is 2.133 and its variance is 
1.32 (cf figure 7). 
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